### **Carotid Duplex Ultrasonography**: What Every Vascular Specialist Must Know

Michael R. Jaff, DO, FACP, FACC Professor of Medicine Harvard Medical School (leave of absence) Chief Medical Officer Boston Scientific Corporation



# Carotid Duplex Ultrasonography

· Highly accurate and reliable test

#### Advantages

- Direct visualization of the extracranial carotid arteries
- Accurate determination of degrees of stenosis
- Assess presence and morphology of plaque
- Useful tool to evaluate revascularization procedures
- Identify non-atherosclerotic carotid artery abnormalities
  - Carotid Dissection
  - Fibromuscular Disease
  - Trauma
- Despite criticisms, surgeons have *successfully* performed carotid endarterectomy on the basis of duplex ultrasonography alone

#### 64 year old RH WM

- First routine physical exam in 20 years
- Obtained for reduction in insurance premiums
- Feels well
- No TIA/CVA symptoms
- No angina, DOE
- No intermittent claudication

































































#### Basics of Carotid Duplex Ultrasound (Spectral Analysis and Color Flow Imaging)

- Color flow imaging is based on pulsed Doppler ultrasound and thus is subject to the same physical limitations as pulsed Doppler imaging with spectral analysis
  - Doppler frequency shift depends on beam to vessel angle
  - Color assignments will only be accurate if the angle is set properly and remains constant along the length of the vessel
  - Since vessels are rarely straight, color differences may represent true velocity changes or variations in frequency shift resulting from changes in Doppler angle

#### Basics of Carotid Duplex Ultrasound (Spectral Analysis and Color Flow Imaging)

- Aliasing
  - Spectral analysis
    - abrupt loss of waveform above the Nyquist limit, with the missing portion appearing below the baseline as flow in the reverse direction
- · Color flow image
  - high-velocity jets are assigned colors that indicate flow in the direction opposite to the arterial flow









# Carotid Duplex Ultrasonography



| Cleveland Clinic Criteria for Duplex Ultrasound |                                                            |                             |  |  |  |  |  |  |  |  |
|-------------------------------------------------|------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| Determination of ICA Stenosis                   |                                                            |                             |  |  |  |  |  |  |  |  |
|                                                 | X                                                          |                             |  |  |  |  |  |  |  |  |
|                                                 | Velocity Criteria, cm/sec                                  | Spectral Broadening         |  |  |  |  |  |  |  |  |
| 0-19%                                           | <u>&lt;</u> 105                                            | No                          |  |  |  |  |  |  |  |  |
| 20-39%                                          | <u>&lt;</u> 105                                            | Yes                         |  |  |  |  |  |  |  |  |
| 40-59%                                          | > 105, <u>&lt;</u> 150                                     | Yes                         |  |  |  |  |  |  |  |  |
| 60-79%                                          | > 150, <u>&lt;</u> 220                                     | Yes                         |  |  |  |  |  |  |  |  |
| 80-99%                                          | > 220 <b>AND</b> End Diastolic<br>Velocity <u>&gt;</u> 135 | Yes                         |  |  |  |  |  |  |  |  |
| Occluded                                        | No Doppler Signal,<br>Pre-Occlusive Thump                  | 'High Resistant' CCA signal |  |  |  |  |  |  |  |  |
|                                                 |                                                            |                             |  |  |  |  |  |  |  |  |



| ICA Qualitative<br>Stenosis | % Stenosis | PSV                             | EDV                     | ICA / CCA<br>Ratio   |
|-----------------------------|------------|---------------------------------|-------------------------|----------------------|
| Normal                      | 0-19%      | <105 cm / sec                   |                         |                      |
| Mild                        | 20-49%     | $\ge = 105 - $<br><150 cm / sec |                         |                      |
| Moderate                    | 50-69%     | $\geq =150 -$<br><250 cm / sec  |                         | <u>&gt;</u> 2.0-<4.0 |
| Severe                      | 70-89%     | <u>&gt;</u> 250 cm /sec         | <135 cm/ sec            | <u>&gt;</u> 4.0      |
| Very severe                 | 90-99%     | <u>&gt; 250 cm/ sec</u>         | <u>&gt;</u> 135 cm /sec | <u>&gt;</u> 5.0      |
| Occluded                    | 100%       |                                 |                         |                      |

# No Surprise That There Are *So Many* Different Diagnostic Criteria....

| Publication                         | Grayscale<br>imaging <sup>†</sup> | PSV<br>(cm/s) | EDV<br>(cm/s) | ICA-to-CCA<br>PSV ratio | St Mary<br>ratio <sup>§</sup> | Prestenotic<br>flow (CCA EDV) | Poststenotic flow<br>disturbances | Collateral flow |
|-------------------------------------|-----------------------------------|---------------|---------------|-------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------|
| >50% stenosis                       |                                   |               |               |                         |                               |                               |                                   |                 |
| Grant et al. 2003 (29)              | +                                 | >125          | >40           | >2.0                    | -                             | -                             | -                                 | -               |
| Oates et al. 2009 (43)              | -                                 | >125          | -             | >2.0                    | >8.0                          | -                             | -                                 | -               |
| Arning et al. 2010 (45)             | -                                 | >200          | -             | >2.0                    | -                             | -                             | Moderate                          | Not present     |
| von Reutern <i>et al.</i> 2012 (36) | +                                 | >125          | -             | >2.0                    | -                             | -                             | Moderate                          | Not present     |
| Jogenstrand et al. 2012 (46)        | -                                 | > 230         | -             | -                       | -                             | -                             | -                                 | -               |
| Mozzini 2016 et al. (47)            | -                                 | >200          | -             | >2.0                    | -                             | -                             | -                                 | -               |
| >70% stenosis                       |                                   |               |               |                         |                               |                               |                                   |                 |
| Grant et al. 2003 (29)              | +                                 | >230          | >100          | >4.0                    | -                             | -                             | -                                 | -               |
| Oates et al. 2009 (43)              | -                                 | >230          | -             | >4.0                    | >14.0                         | -                             | -                                 | -               |
| Arning et al. 2010 (45)             | -                                 | >300          | >100          | >4.0                    | -                             | -                             | Present                           | Present         |
| von Reutern <i>et al.</i> 2012 (36) | -                                 | >230          | >100          | >4.0                    |                               | Reduced                       | Present                           | Present         |
| Jogenstrand et al. 2012 (46)        | -                                 | >320          | -             | -                       | -                             | -                             | -                                 | -               |
| Mozzini 2016 et al. (47)            | -                                 | >300          | >100          | >4.0                    | _                             | Reduced                       | -                                 | -               |

# Pitfalls of Carotid Duplex Imaging

- Multiple instruments/probes
- Multiple Doppler angles
- · Misidentification of a pulsatile vein for the internal carotid artery
- Misidentification of the external carotid as the internal carotid artery
  i.e. External carotid artery with significant stenosis
- · Tortuous vessels
- · Failure to survey the distal internal carotid artery
- · Failure to interrogate the common carotid or innominate arteries
- Near total occlusion ("string sign")
- Calcification
- Spot Doppler assessment

























| Carotid S | Stent Du                                                                                                                                                                                               | plex                                                                                                                                    | US                                                                                                                                               | Cri                                                                                                       | teria                                                                                        | ł                                                                                                       |                                                                                                   |                    |          |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|----------|--|
|           | Study<br>(Reference)                                                                                                                                                                                   | Number<br>of<br>Patients                                                                                                                | %<br>Stenosis                                                                                                                                    | PSV<br>(cm/sec)                                                                                           | EDV<br>(cm/sec)                                                                              | ICA/CCA                                                                                                 | Sensitivity<br>(%)                                                                                | Specificity<br>(%) | Accuracy |  |
|           | Lal <sup>18</sup>                                                                                                                                                                                      | 26                                                                                                                                      | ≥20                                                                                                                                              | >150                                                                                                      | N/A                                                                                          | ≥ 2.16                                                                                                  | 100                                                                                               | 98                 |          |  |
|           | Peterson <sup>1</sup>                                                                                                                                                                                  | 158                                                                                                                                     | >50                                                                                                                                              | >170                                                                                                      | >120                                                                                         | N/A                                                                                                     | 100                                                                                               | 100                |          |  |
|           | Stanziale <sup>2</sup>                                                                                                                                                                                 | 118                                                                                                                                     | ≥70                                                                                                                                              | <u>≥</u> 350                                                                                              | N/A                                                                                          | <u>≥</u> 4.75                                                                                           | 100                                                                                               | 96                 |          |  |
|           | Chi <sup>3</sup>                                                                                                                                                                                       | 260                                                                                                                                     | <u>≥70</u>                                                                                                                                       | <u>≥</u> 450                                                                                              | N/A                                                                                          | <u>≥4.3</u>                                                                                             | 67                                                                                                |                    | 85       |  |
|           | AbuRahma '                                                                                                                                                                                             | 93                                                                                                                                      | >30                                                                                                                                              | >155                                                                                                      | N/A                                                                                          | N/A                                                                                                     | 100                                                                                               | 90                 |          |  |
|           | Zhou                                                                                                                                                                                                   | 237                                                                                                                                     | 2/0                                                                                                                                              | >300                                                                                                      | ~90                                                                                          | ~4.0                                                                                                    | 94                                                                                                | 50                 |          |  |
|           | Setacci                                                                                                                                                                                                | 814                                                                                                                                     | >70                                                                                                                                              | >300                                                                                                      | >140                                                                                         | >3.8                                                                                                    | 99                                                                                                | 98                 |          |  |
|           | <sup>1</sup> Peterson BG, L<br>carotid stenting.<br><sup>2</sup> Stanziale SF, V<br>duplex ultrasour<br><sup>3</sup> Chi YW, White<br>Cath Cardiovasc<br><sup>4</sup> AbuRahma AF,<br>carotid in-stent | ongo GM, Kibl<br>Ann Vasc Sur<br>Vholey MH, Bo<br>Id criteria. J E<br>CJ, Woods TC,<br>Intervent 200<br>Maxwell D, Ea<br>restenosis. VC | be MR, et al.<br>rg 2005;19:7<br>ules TN, et a<br>indovasc The<br>Goldman CP<br>07;69:349-54<br>ads K, et al.<br>uscular 2007<br>, et al. Ultras | Duplex ultra<br>793-7.<br>I. Determinin<br>r 2005;12:3-<br>Carotid duple<br>(15:119-25.<br>cound criteria | isound remaing in-stent st<br>46-53.<br>I velocity crite<br>ex velocity cri<br>for severe ir | Ins a reliable ter<br>enosis of carotid<br>eria for carotid i<br>teria revisited for<br>-stent restenos | st even after<br>d arteries by<br>n-stent restenosis<br>or the diagnosis c<br>is following caroti | s.<br>f<br>d       |          |  |







|    | Carotid ]        | Duplex Ultras                                     | ound Velocity                                    | Measurements Versus                                        | S |
|----|------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---|
|    | Int              | travascular Ul                                    | trasound in D                                    | etecting Carotid                                           |   |
|    |                  | In                                                | Stent Resteno                                    | sis                                                        |   |
|    | Bryan P. Ya<br>F | an, MBBS; David J. Cla<br>cobert M. Schainfeld, D | ark, MBBS; Michael R.<br>10; Sara Lessio, MD†; 1 | Jaff, DO; Thomas J. Kiernan, MD;<br>Kenneth Rosenfield, MD |   |
|    |                  |                                                   | Sensitivity, % (95% Cl)                          | Specificity, % (95% Cl)                                    |   |
|    |                  | PSV ≥197 cm/s                                     | 75 (35–96)                                       | 93 (79–99)                                                 |   |
|    | Sensit<br>Specif | ivity: ICA/CC/<br>icity: >98% In                  | A >2 PLUS EI<br>crease in PS                     | DV > 41 cm/sec<br>V                                        |   |
|    |                  | PSV+EDV                                           | 75 (35–96)                                       | 93.9 (80–99)                                               |   |
|    |                  | PSV+ICA/CCA                                       | 75 (35–96)                                       | 90.6 (75–98)                                               |   |
|    |                  | $PSV + \%\Delta PSV$                              | 37.5 (9–75)                                      | 96.9 (84–100)                                              |   |
|    |                  | EDV+ICA/CCA                                       | 100 (63–100)                                     | 84.4 (67–95)                                               |   |
|    |                  | PSV+EDV+ICA/CCA                                   | 77.7 (38–97)                                     | 90.3 (75–98)                                               |   |
| 67 | Circ C           | ardiovasc Interv 200                              | 9;2:438                                          |                                                            |   |











