

Disclosures

- Grant support:
 - Bayer
- Consulting fees:
 - Apogee Therapeutics, Chiesi, Ono Pharma, Sanofi, Takeda, Verona Pharma

Outline

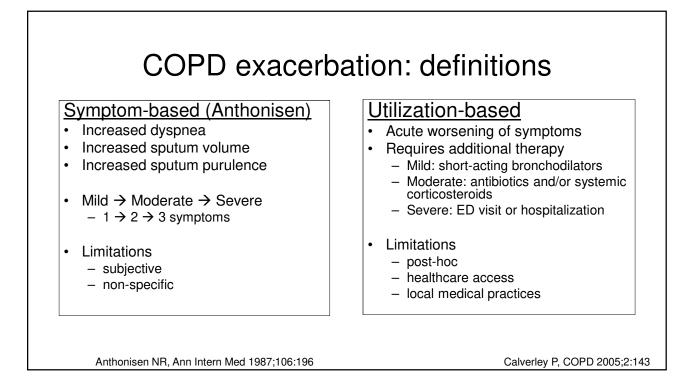
- COPD exacerbations
- Assessment of stable COPD
- Treatment of stable COPD
 - Preventing exacerbations
- Lung volume reduction
- New concepts in COPD diagnosis

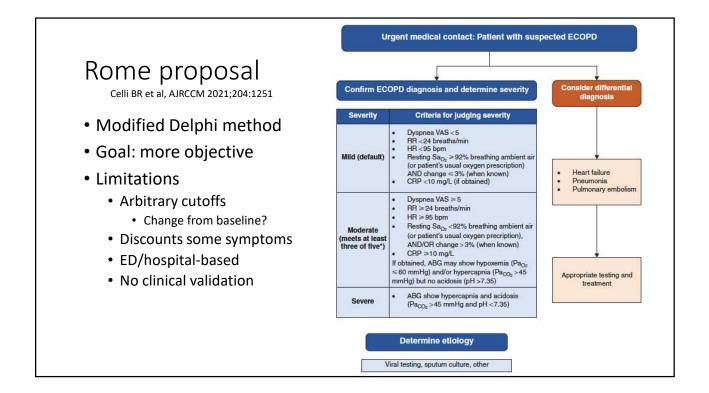
- COPD exacerbations
- Assessment of stable COPD
- Treatment of stable COPD

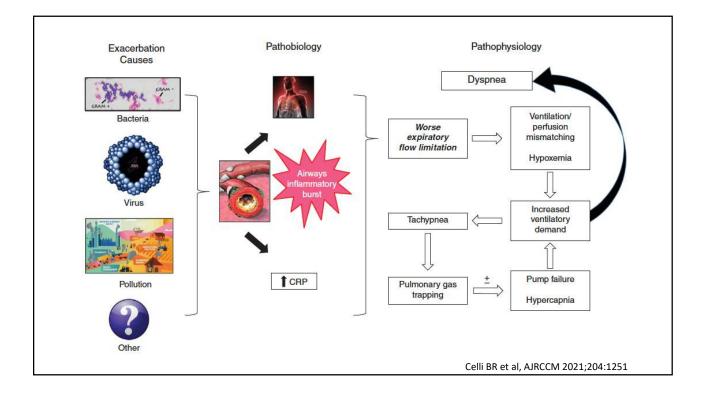
 Preventing exacerbations
- Lung volume reduction
- New concepts in COPD diagnosis

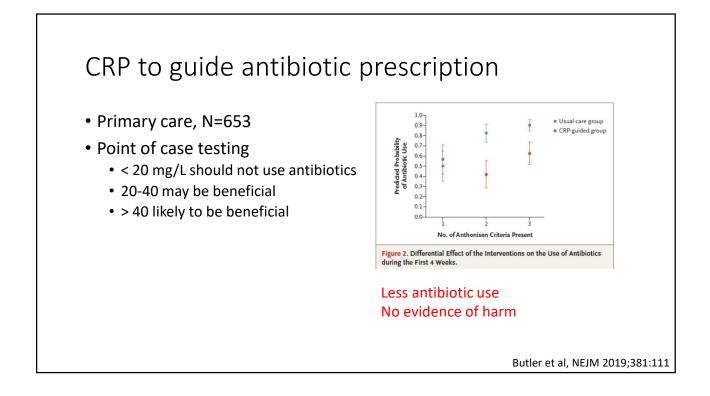
*Case #1

A 72F former smoker presents to the ED with 3 days of dyspnea, productive cough, and chest tightness. She is tachycardic, tachypneic, SaO_2 88% on room air, and wheezing on exam.

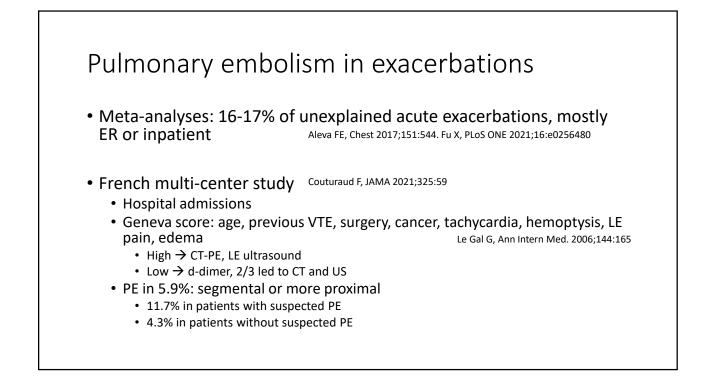

Besides COPD exacerbation, the differential diagnosis includes:


- A. Community acquired pneumonia
- B. Pulmonary embolism
- C. Acute decompensated heart failure
- D. (A) and (C) only
- E. All of the above


A 72F former smoker presents to the ED with 3 days of dyspnea, productive cough, and chest tightness. She is tachycardic, tachypneic, $SaO_2 88\%$ on room air, and wheezing on exam.


Besides COPD exacerbation, the differential diagnosis includes:

- A. Community acquired pneumonia
- B. Pulmonary embolism
- C. Acute decompensated heart failure
- D. (A) and (C) only
- E. All of the above



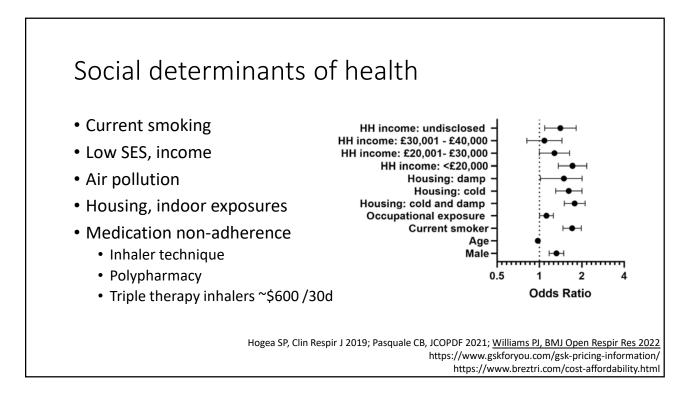
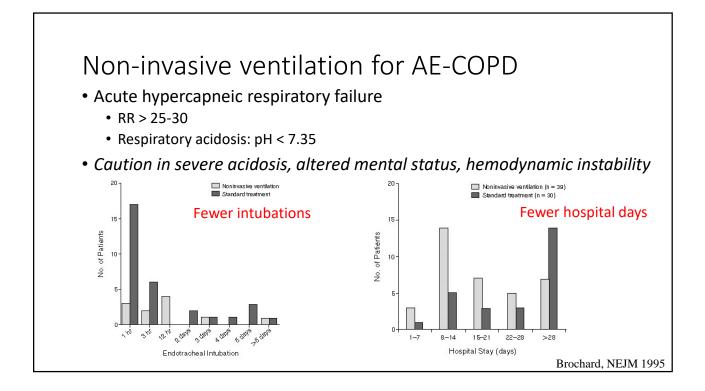
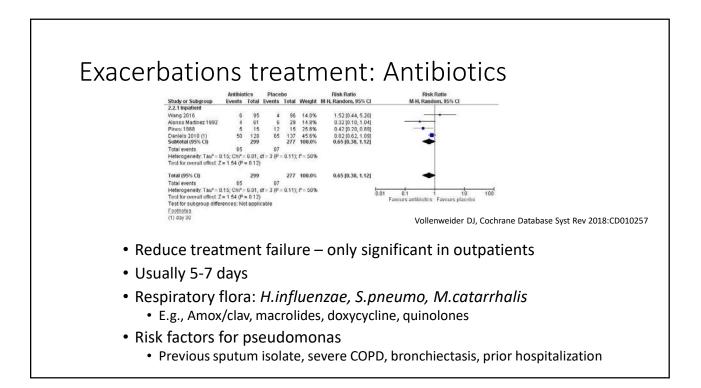


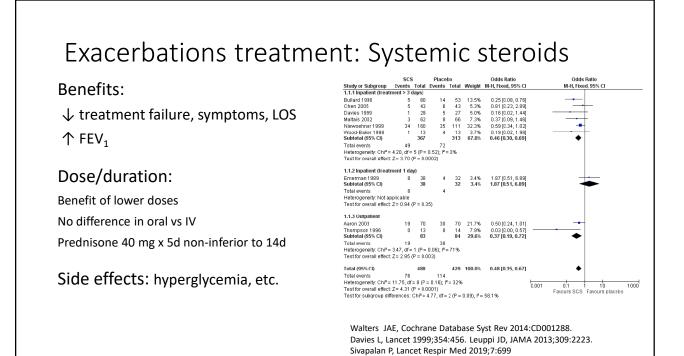
	Table 2 Antibiotic Du	rations and Secon	dary Outcomes	f Total
 Pre/post intervention 		Cohort		i iotai
 <0.1 μg/L antibiotics strongly discouraged 	Variable	Pre- intervention (n = 166)	Post- intervention (n = 139)	P value
 0.1-0.25 discouraged 	Duration of total antibiotics, mean (SD),	5.3 (3.2)	3.0 (2.9)	0.01
• 0.25-0.5 recommended	days Duration of IV	2.5 (2.4)	1.9 (1.8)	0.02
 >0.5 strongly recommended 	antibiotics, mean (SD), days Total antibiotic duration, n (%)			
	0 to 1 day 2 to 5 days 6 to 7 days 8 to 10 days 11 to 14 days	24 (14.5) 73 (44.0) 37 (22.3) 23 (13.8) 8 (4.8)	61 (43.8) 48 (34.6) 18 (13.0) 10 (7.2) 2 (1.4)	
Less antibiotic use	More than 14 days Inpatient LOS, mean	1 (0.6) 4.1 (3.9)	0 (0) 2.9 (2.0)	0.01
Shorter LOS	(SD), days All-cause 30-day read- mission, n (%)	24 (14.5)	23 (16.6)	0.25
No difference in readmission rate	Respiratory-related 30- day readmission, n (%)	18 (10.8)	13 (9.4)	0.18

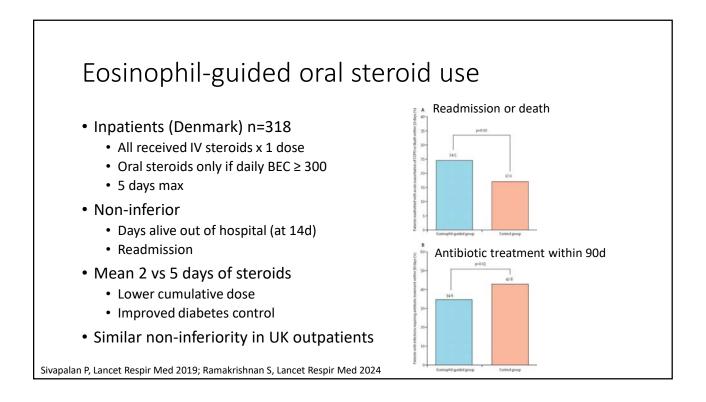
68M presents to the ED with a COPD exacerbation. He is treated with nebulized albuterol/ipratropium and supplemental O_2 via nasal cannula.

ABG: pH 7.32, PaCO₂ 55 mmHg, PaO₂ 100 mmHg, SaO₂ 99% on 6 lpm O₂


Which of the following will reduce his risk of mortality?

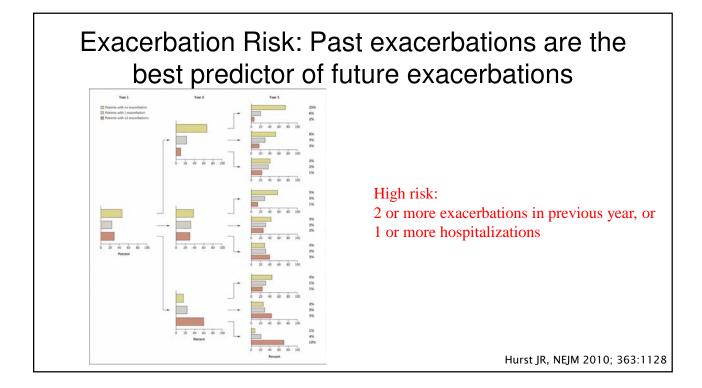

- A. Prednisone 40 mg daily
- B. Azithromycin x 5 days
- C. Bilevel positive airway pressure (BiPAP)
- D. Reducing supplemental O₂ to keep SaO₂ 89-93%
- E. Intubation and mechanical ventilation


Case # 2


68M presents to the ED with a COPD exacerbation. He is treated with nebulized albuterol/ipratropium and supplemental O_2 via nasal cannula. ABG: pH 7.32, PaCO₂ 55 mmHg, PaO₂ 100 mmHg, SaO₂ 99% on 6 lpm O₂ Which of the following will reduce his risk of mortality?

- A. Prednisone 40 mg daily
- B. Azithromycin x 5 days
- C. Bilevel positive airway pressure (BiPAP)
- D. Reducing supplemental O₂ to keep SaO₂ 89-93%
- E. Intubation and mechanical ventilation

- COPD exacerbations
- Assessment of stable COPD
- Treatment of stable COPD
 - Preventing exacerbations
- Lung volume reduction
- New concepts in COPD diagnosis

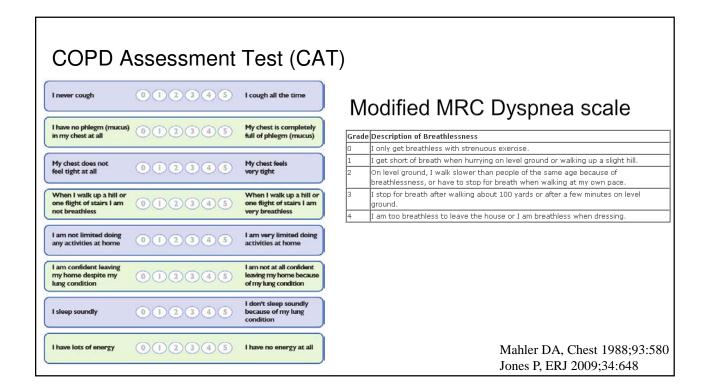

*Case #3

You are discharging a 70F after a COPD exacerbation. At baseline, she has daily cough and sputum and has to stop walking after a few minutes. She uses supplemental oxygen at 2 lpm. She was treated with antibiotics for acute bronchitis 6 months ago. Her last FEV_1 was 45% predicted. She still smokes. Which of the following is her strongest risk factor for a COPD exacerbation in the next year?

- A. Chronic bronchitis symptoms
- B. $FEV_1 < 50\%$ predicted
- C. History of two or more exacerbations in the past year
- D. Use of supplemental O₂
- E. Current smoking

You are discharging a 70F after a COPD exacerbation. At baseline, she has daily cough and sputum and has to stop walking after a few minutes. She uses supplemental oxygen at 2 lpm. She was treated with antibiotics for acute bronchitis 6 months ago. Her last FEV_1 was 45% predicted. She still smokes. Which of the following is her strongest risk factor for a COPD exacerbation in the next year?

- A. Chronic bronchitis symptoms
- B. $FEV_1 < 50\%$ predicted
- C. History of two or more exacerbations in the past year
- D. Use of supplemental O₂
- E. Current smoking

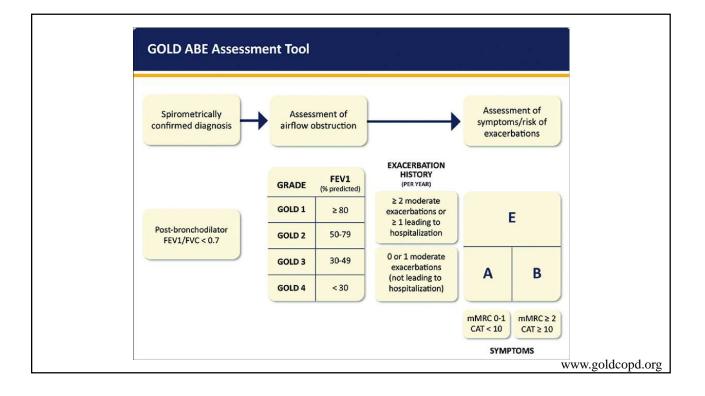

Assessment: Symptoms and Signs of COPD

<u>Symptoms</u>

Cough Sputum Dyspnea Wheeze Chest tightness Weight loss Muscle weakness Edema Depression

Physical Exam

Tripod posture Skin: cyanosis Breathing: tachypnea, pursed lip breathing, prolonged expiration, accessory muscle use Barrel Chest Breath Sounds: distant, wheezes Cardiac: distant, increased P2, JVD, edema Cachexia

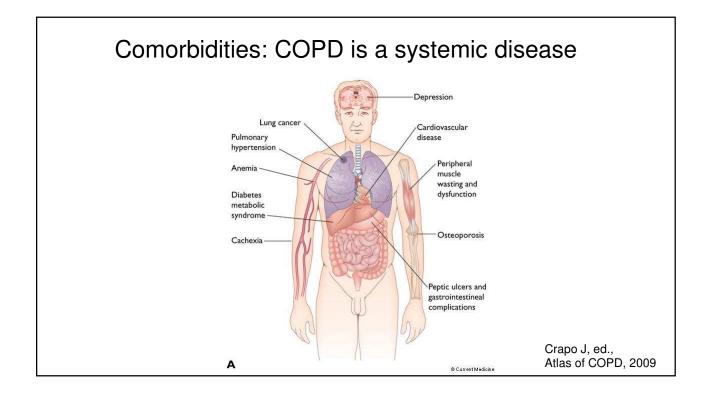


Global Strategy for Diagnosis, Management and Prevention of COPD Classification of Severity of Airflow Limitation in COPD*

In patients with $FEV_1/FVC < 0.70$:

GOLD 1: Mild $FEV_1 \ge 80\%$ predictedGOLD 2: Moderate $50\% \le FEV_1 < 80\%$ predictedGOLD 3: Severe $30\% \le FEV_1 < 50\%$ predictedGOLD 4: Very Severe $FEV_1 < 30\%$ predicted*Based on Post-Bronchodilator FEV_1

© 2014 Global Initiative for Chronic Obstructive Lung Disease



Other assessments

- Chest CT scan
 - Differential diagnosis
 - Bronchiectasis
 - "symptoms out of proportion"
 - Lung cancer screening
 - Lung volume reduction
- · Blood eosinophil count
- Alpha-1 antitrypsin deficiency
 - 1-2% of COPD in USA
 - AAT level +/- genotype or protein phenotype

Sandhaus RA, JCOPDF 2016; 3(3): 668-682

A 65 year old male current smoker with presents with cough and exertional dyspnea (MMRC 2). He had one exacerbation last year. Spirometry: FEV_1 55% predicted, FEV_1/FVC 0.6.

Appropriate treatments include:

A. LABA+LAMA inhaler

B. Triple therapy inhaler (LABA+LAMA+ICS)

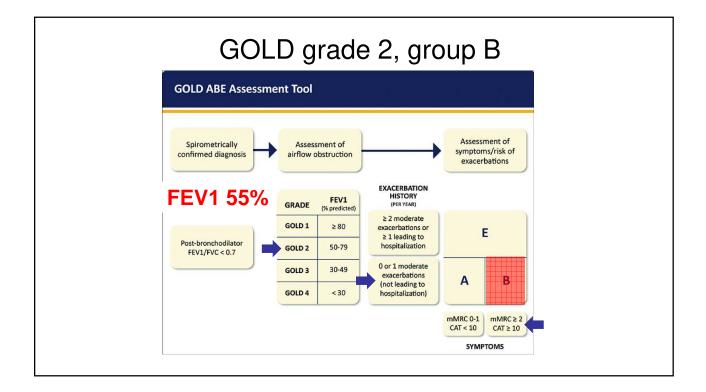
C. Nicotine replacement therapy

D. All of the above

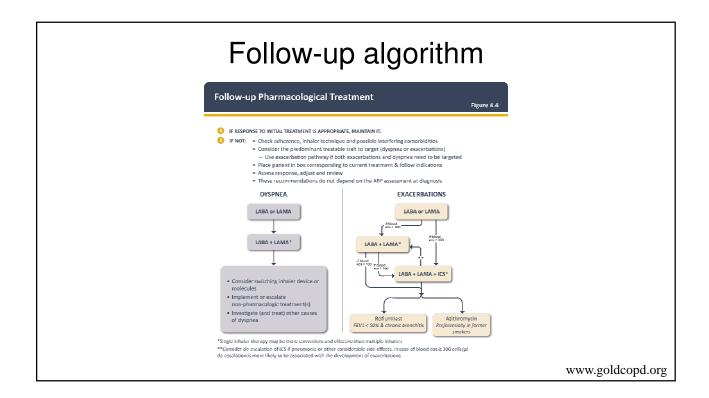
E. (A) and (C) only

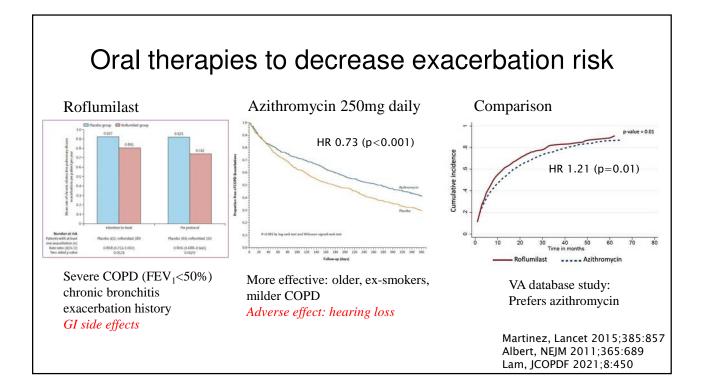
Case #4

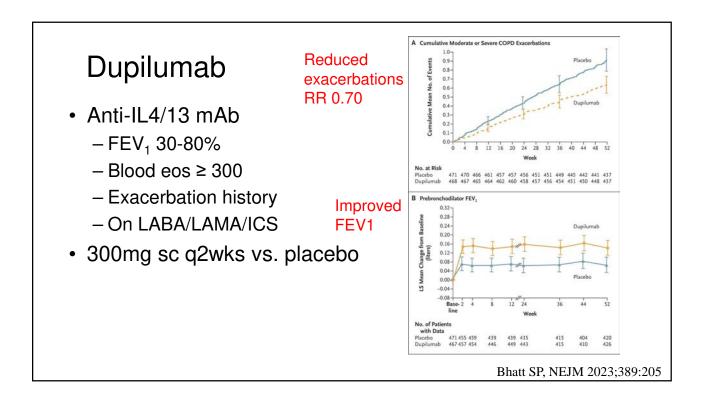
A 65 year old male current smoker with presents with cough and exertional dyspnea (MMRC 2). He had one exacerbation last year. Spirometry: FEV_1 55% predicted, FEV_1/FVC 0.6.

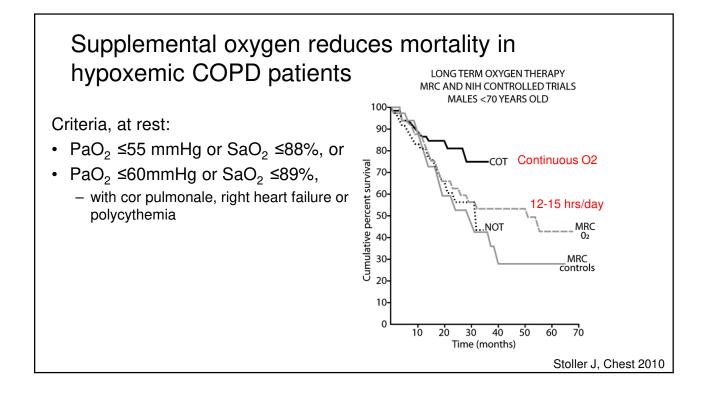

Appropriate treatments include:

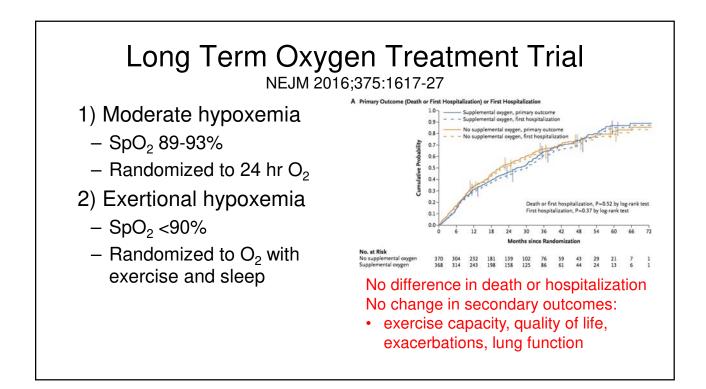
- A. LABA+LAMA inhaler
- B. Triple therapy inhaler (LABA+LAMA+ICS)
- C. Nicotine replacement therapy
- D. All of the above
- E. (A) and (C) only

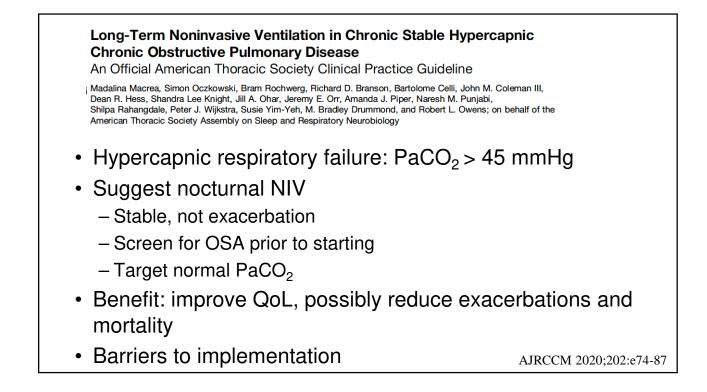

COPD treatment: overview

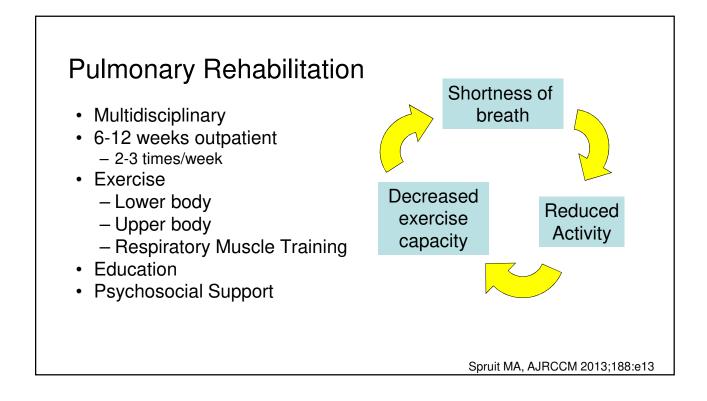

- · Goals of treatment
 - 1. Reduce symptoms
 - 2. Reduce risk
- Smoking Cessation
- Supplemental oxygen
- Pulmonary Rehabilitation
- Vaccinations
 - Influenza, Pneumococcal, COVID-19, RSV

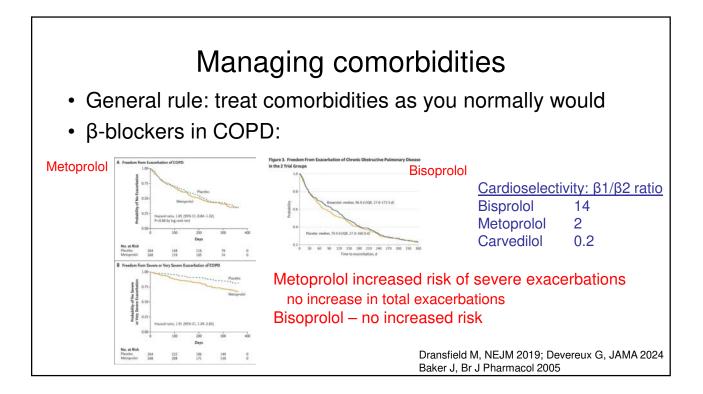

Poole PJ, Cochrane Database Syst Rev 2006; Dransfield MT, AJRCCM 2009;180:499; Kobayashi M, MMWR 2022;71:109




COPD pharmacotherapy			
P a moderate exacerbations or 2 i leading to hospitalization GROUP E LABA + LAMA* O or 1 moderate exacerbations (not leading to hospital admission) GROUP A GROUP A O or 1 moderate exacerbations (not leading to hospital admission) GROUP A GROUP A Matrix Co-1, CAT < 10 MMRC 0-1, CAT < 10 MMRC 2, CAT ≥ 10	Bronchodilators are first-line Long-acting: LABA or LAMA Dual bronchodilators: LAMA+LABA Short-acting bronchodilators in all patients Targeted use of inhaled corticosteroids GOLD E, blood eosinophils ≥ 300 Triple therapy: LABA+LAMA+ICS Risk of pneumonia		
\cdot single inhaler therapy may be more convenient and effective than multiple inhalers WWW.goldcopd.org			
•	n Intern Med 2011; Tashkin, NEJM 2008; Rodrigo, Int J COPD 2017 EJM 2007; Ernst, AJRCCM 2007; Magnussen, NEJM 2014		






You are discharging a 72F with stable COPD (FEV₁ 55%, GOLD B) after an acute MI, treated with PCI. Her LV function is normal. In addition to anti-platelet therapy, statin, and ACE-inhibitor, which of the following would you prescribe?

- A. Carvedilol
- B. Bisoprolol
- C. Diltiazem
- D. Any of the above
- E. (A) or (B) only

Case #5

You are discharging a 72F with stable COPD (FEV₁ 55%, GOLD B) after an acute MI, treated with PCI. Her LV function is normal. In addition to anti-platelet therapy, statin, and ACE-inhibitor, which of the following would you prescribe?

- A. Carvedilol
- B. <u>Bisoprolol</u>
- C. Diltiazem
- D. Any of the above
- E. (A) or (B) only

- COPD exacerbations
- Assessment of stable COPD
- Treatment of stable COPD
 - Preventing exacerbations
- Lung volume reduction
- New concepts in COPD diagnosis

A rapid response is called on a 66yo F who underwent bronchoscopic lung volume reduction with LUL endobronchial valves earlier today. She is tachypneic and tachycardic, SaO₂ 88% on 6 lpm nasal cannula.

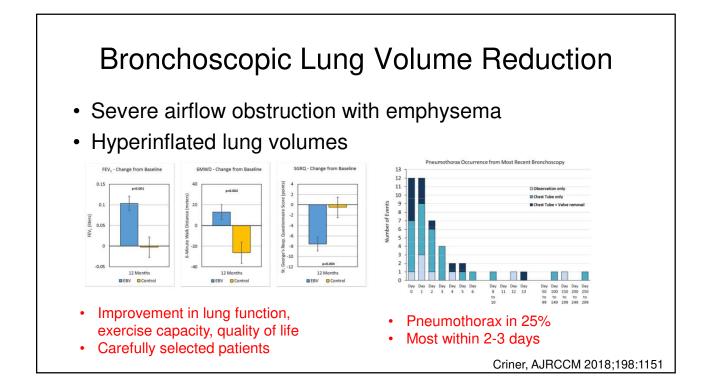
The most likely cause of her acute worsening is:

- A. Aspiration
- B. Reaction to general anesthesia
- C. COPD exacerbation
- D. Pneumothorax
- E. Pulmonary embolism

Case #6

A rapid response is called on a 66yo F who underwent bronchoscopic lung volume reduction with LUL endobronchial valves earlier today. She is tachypneic and tachycardic, SaO₂ 88% on 6 lpm nasal cannula.

The most likely cause of her acute worsening is:


- A. Aspiration
- B. Reaction to general anesthesia
- C. COPD exacerbation
- D. Pneumothorax
- E. Pulmonary embolism

Surgical or interventional treatments for COPD

- Lung volume reduction
 - Reduce hyperinflation
 - Improve respiratory mechanics
- Surgical
 - Upper lobe predominant
 - Low exercise capacity
- Bronchoscopic valves
- Lung transplantation

A State of Constraints and Art Blacked Art

NETT, NEJM 2003;348:2059 *Klooster K, NEJM 2015;373:2325 Davey C, Lancet 2015;386:1066 Yusen R, J Heart Lung Transplant 2015;34:1264

- COPD exacerbations
- Assessment of stable COPD
- Treatment of stable COPD – Preventing exacerbations
- Lung volume reduction
- New concepts in COPD diagnosis

*Case #7

You are discharging a 70M former smoker admitted for "COPD exacerbation".

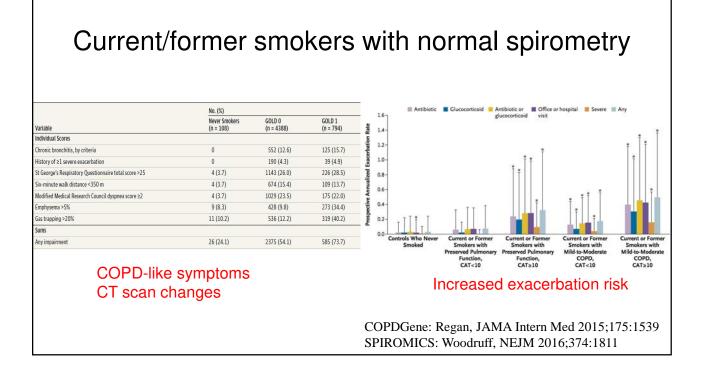
At baseline, he has daily cough, sputum, and exertional dyspnea.

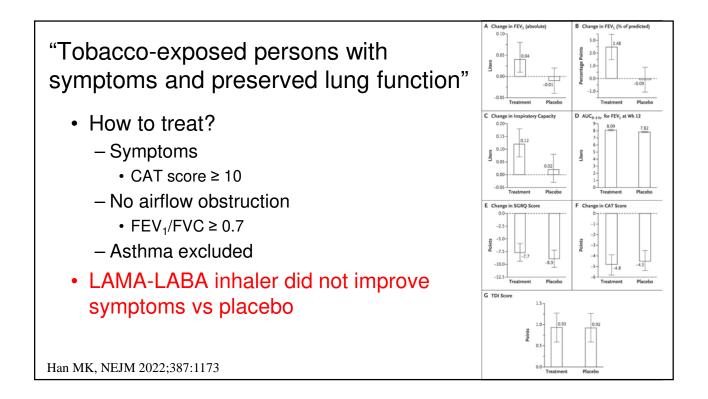
Work-up in the past year:

Spirometry: normal

Blood eosinophil count 50

Lung screening CT scan: mild bronchial wall thickening


Which of the following is most likely to improve his symptoms?


- A. LAMA-LABA inhaler
- B. Triple therapy (LAMA-LABA-ICS)
- C. Azithromycin 250mg daily
- D. Roflumilast
- E. None of the above

You are discharging a 70M former smoker admitted for "COPD exacerbation". At baseline, he has daily cough, sputum, and exertional dyspnea. Work-up in the past year:

Spirometry: normal Blood eosinophil count 50 Lung screening CT scan: mild bronchial wall thickening Which of the following is most likely to improve his symptoms? A. LAMA-LABA inhaler

- B. Triple therapy (LAMA-LABA-ICS)
- C. Azithromycin 250mg daily
- D. Roflumilast
- E. None of the above

Summary: COPD exacerbations No objective definition or biomarkers Consider differential diagnosis Treatment Oxygen and bronchodilators Antibiotics and systemic steroids have small effects Non-invasive ventilation in hypercapneic respiratory failure

Summary: Stable COPD

- Multidimensional assessment
 - symptoms and exacerbation risk
- Assessment and management of comorbidities
- Non-pharmacologic treatments
 - Smoking cessation
 - Pulmonary rehab
 - Vaccines
 - Supplemental O₂ not clearly beneficial for exercise induced desaturation

Summary: Stable COPD (2)

- COPD medications
 - Bronchodilators are first line therapy: LAMA-LABA
 - Inhaled steroids are add-on elevated blood eosinophils
 - Daily azithromycin or roflumilast for frequent exacerbators
- Lung volume reduction
 - Selected patients, specialized centers
- New concepts in COPD diagnosis
 - Tobacco-exposed persons with symptoms and preserved lung function

References

- Global Initiative for Chronic Obstructive Lung Disease, Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease, available at <u>www.goldcopd.org</u>
- COPD Foundation, <u>www.copdfoundation.org</u>
 Patient information, including inhaler instructional videos
- Nici L, et al., Pharmacologic Management of Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2020;201:e56-e69
- Celli B, et al., An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am J Respir Crit Care Med 2021; 204:1251-1258.